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Abstract. We apply the self-consistent diagram approximation to calculate equilibrium properties of lattice
systems. The free energy of the system is represented by a diagram expansion in Mayer-like functions with
averaging over states of a reference system. The latter is defined by one-particle mean potentials, which
are calculated using the variational condition formulated. As an example, numerical computations for a
two-dimensional lattice gas on a square lattice with attractive interaction between nearest neighbours were
carried out. The critical temperature, the phase coexistence curve, the chemical potential and particle and
vacancy distribution functions coincide within a few per cent with exact or with Monte Carlo data.

PACS. 05.50.+q Lattice theory and statistics (Ising, Potts, etc.) – 05.70.Ce Thermodynamic functions
and equations of state – 64.60.-i General studies of phase transitions

1 Introduction

Two- and three-dimensional lattice models are frequently
used for the description of equilibrium and kinetic proper-
ties of solid state ionics, solid electrolytes, solid solutions,
magnetic materials and surface phenomena [1–9], just to
name a few. These relatively simple models of many-body
systems are widely used for clarifying different aspects of
critical phenomena [10] and thus different approaches for
their investigation are developed. Nevertheless, for most
lattice models general analytical solutions are not known.

Series expansions which in principle may yield ex-
act equilibrium characteristics frequently suffer from very
slow convergence requiring tedious calculations [11] and
are not suitable for numerical problems. In recent years,
interest has grown in the lattice gas modeling of non-
equilibrium phenomena such as surface diffusion [12–14],
intercalation [15], crystal growth and surface roughen-
ing [16], phase transitions under non-equilibrium condi-
tions [17], etc. and there is, therefore, a need to develop
simplified approximate methods for their sufficiently accu-
rate description. In contrast with the conventional point of
view, which mainly addresses lattice systems to investigat-
ing critical phenomena, this modeling requires the knowl-
edge of equilibrium lattice gas characteristics at different
thermodynamic conditions.

One of the best known approaches for equilibrium
phenomena is the mean field approximation. It can be
used in the most simple Bragg-Williams form or in the
form of the Bethe-Peierls (or quasi-chemical) approxi-
mation [18]. However, the critical temperature for the
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two-dimensional square lattice gas with nearest neigh-
bour interaction (in units of the interaction parameter) in
Bragg-Williams (1.0) and quasi-chemical (0.721) approxi-
mations sufficiently deviate from the exact value (0.567).
In addition, the coexisting curve in the phase diagram,
the chemical potential and other equilibrium properties of
such systems are badly represented by these approxima-
tions, both at attractive and repulsive interactions. Dif-
ferent discretized versions of integral equations success-
fully used in the theory of liquids [19] have shown re-
stricted applicability to specific values of lattice concentra-
tion and temperature [20]. The Kikuchi’s cluster variation
method [21–23], although very powerful in principle, can-
not be applied in some cases [24] since cumbersome cal-
culations are required. Hence, the development of other
approximate schemes is highly desirable.

In this paper we propose a new approximate method
for equilibrium characteristics based on the diagram ex-
pansion of the lattice gas free energy in terms of Mayer-
like functions and the variational condition for the self-
consistent calculation of mean potentials. We apply this
self-consistent diagram approximation (SCDA) for the
calculation of thermodynamic quantities (i.e. chemical po-
tential, heat capacity and phase transition curve for two-
dimensional lattice gases with nearest neighbour interac-
tions) and distribution functions as well. These quantities
were also calculated by means of Monte Carlo (MC) sim-
ulations. The comparison between SCDA and MC data
demonstrates the high accuracy of our approach.

The reasons for this consideration are that (a) two-
dimensional lattice gases are widely used for modeling
surface phenomena (see Refs. [5,6,12–14,16,17]) and (b)
the main characteristics of an interacting lattice gas on a



298 The European Physical Journal B

square lattice are very badly reproduced by different ap-
proximate approaches. For example, critical temperatures
for Bragg-Williams, quasi-chemical approximations and
the best estimations on the basis of the high temperature
series expansions (see [25]) are consecutively, as follows,
for simple (1.0; 0.822; 0.752) and face centered (1.0; 0.914;
0.816) cubic lattices, i.e. the discrepancies are much lower
than for the two-dimensional case. The SCDA describes
quite satisfactorily two- as well as three-dimensional lat-
tices.

The organization of the paper is as follows. In Section 2
we describe the concept of mean potentials and formulate
the variational conditions. The quasi-chemical approxima-
tion (QChA) in terms of our approach is considered in
Section 3. First order corrections to the QChA (i.e. the
SCDA) are discussed in Section 4. In Section 5 we present
and compare calculated and MC results. Conclusions are
given in the final section.

2 The concept of mean potentials
and the variational conditions

The potential energy of a lattice gas system of n particles
on a regular lattice of N sites is given by

UN =
N∑
i=1

N∑
j>i

Φijninj , (1)

where Φij is the interaction energy of particles on lat-
tice sites i and j. The number of independent interac-
tion constants can be substantially reduced taking into
account the symmetry of a particular lattice. Thus for
the interaction energies the notation Jk = Φij is used fre-
quently for sites i and j, which are neighbours of kth order
(k = 1, 2, . . . for nearest, next nearest and more distant
neighbours, respectively). The occupation of a lattice site
by more than one particle is prohibited, i.e. the occupa-
tion numbers ni = 0, 1 obey the normalisation condition

N∑
i=1

ni = n. (2)

We also consider a reference system, which is defined by
one-particle mean potentials ϕj(ni) describing the inter-
action of a particle (ni = 1) or a vacancy (ni = 0) at site i
with site j, so that its potential energy can be written as

U0
N =

N∑
i=1

N∑
j=1,

ϕj(ni). (3)

We assume ϕj(nj) = 0, i.e. there are no interactions of a
particle or a vacancy with itself.

The equilibrium properties of the lattice gas system
can be extracted from the partition function

QN = Sp{n1,...,nN}{exp(−βUN )}, (4)

where Sp{n1,...,nN} designates the summation over all pos-
sible distributions of particles or over all allowed per-
mutations of occupation numbers satisfying equation (2).
β = (kBT )−1 is inverse temperature and kB the Boltz-
mann constant.

The free energy F of the system per lattice site is de-
fined as

F = −(kBT/N) lnQN . (5)

The partition function of the reference system can eas-
ily be factorised due to the one-particle character of its
potential energy

Q
(0)
N = Sp{n1,...,nN}

{
exp

(
−βU0

N

)}
= Sp{n1,...,nN}


N∏
i=1

exp

−β N∑
j=1,j 6=i

ϕj(ni)


=

[
1∏
l=0

(Ql/θl)
θl

]N
(6)

with

Qni = exp

−β
 N∑
j=1,j 6=i

ϕj(ni)

 (7)

and

θ0 = (N − n)/N, θ1 = n/N, and θ0 + θ1 = 1, (8)

where θ0 and θ1 represent lattice concentrations of vacant
and occupied sites (vacancies and particles), respectively.
The Stirling formula was used to calculate the number of
equivalent terms in equation (6):

N !
n!(N − n)!

∼= 1
θn1 θ

N−n
0

· (9)

In turn, the partition function of the initial system can be
identically expressed as

QN = Q
(0)
N Sp{n1,...,nN}

{
exp

[
−β
(
UN − U (0)

N

)]
× exp

(
−βU (0)

N

)
/Q

(0)
N

}
= Q

(0)
N

〈
exp

[
−β
(
UN − U (0)

N

)]〉
0
, (10)

where the angular brackets with subscript 0 represent
mean values over states of the reference system

〈Amkl...〉0 =
N∑

m,k,l,...

Amkl...θmθkθl.... (11)

Here shortcut notations are used so that subscripts m,
k, l, ... designate lattice sites and occupation numbers as
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well, i.e. the sum in equation (11) represents the summa-
tion over all lattice sites and over all occupation numbers
satisfying equation (2). Due to the simple structure of the
potential energy of the reference system (Eq. (3)) its dis-
tribution functions can be written as products of mean
concentrations of vacancies and particles.

Equation (10) allows us to introduce Mayer-like
functions

fij(ni, nj) = exp {−β [Φijninj − ϕj(ni)− ϕi(nj)]} − 1,
(12)

and to rewrite the partition function in the form

QN = Q
(0)
N

〈
N∏
i=1

N∏
j=i+1

(1 + fij)

〉
0

. (13)

The introduction of Mayer-like functions is advantageous
as compared to standard ones [18,19]. The mean poten-
tials if properly found reduce values of the Mayer-like
functions leading to better convergence of the free energy
expansion in these functions. Equations (6) and (10–12)
reformulate the initially one-component lattice gas prob-
lem in terms of a two-component system. Mayer functions
defined by equation (12) at ϕ = 0 are equal to 0 if at least
one of the sites i or j is vacant. In general, mean potentials
for a vacant site ϕj(0) are not equal zero. Then equa-
tion (13) comprises three Mayer-like functions for each
pair of lattice site occupation numbers, as is the case for
the Mayer functions of a two-component system.

It is well-known that for fluids the diagram expansion
of the free energy in terms of Mayer functions can be rep-
resented by irreducible diagrams [19]. Particular calcula-
tions of these irreducible diagrams, for the case of lattice
gases where multiparticle site occupations are forbidden,
result in appearing reducible diagrams due to excluded
volume restrictions [11]. Fortunately, our self-consistency
conditions (see below) lead to zero values of these re-
ducible diagrams so that we can use only irreducible ones
calculating weight coefficients by means of simple combi-
natorial arguments.

On the basis of equation (13) the free energy of the
system can be calculated and its expansion in the Mayer-
like functions truncated at some level can be used to de-
velop a self-consistent scheme for proper determination
of the mean potentials. Transformation (10) is an iden-
tity and the partition function as well as the free energy
of the system does not depend on the mean potentials.
As an approximation, ultimately justified by its success
(see Sects. 5 and 6), the same requirement can be applied
to the truncated part of the expansion. It means that its
variations (or partial derivatives) with respect to the mean
potentials have to be equal to zero. In the next two sec-
tions this technique is demonstrated deriving QChA and
its first order corrections.

3 The quasi-chemical approximation

An explicit expression for the free energy follows from
equations (5, 10)

F = −kBT

N
lnQN

= −kBT

(
θ0 ln

Q0

θ0
+ θ1 ln

Q1

θ1
+

N∑
i=2

bi

)
, (14)

where bi stands for the contribution of graphs (diagrams)
defined on i vertices (lattice sites). Graph edges corre-
spond to the Mayer-like functions, whereas filled vertices
mean multiplication by concentration and averaging over
the site states (occupied and vacant).

As a first step in the free energy expansion we consider
the free energy of the reference system and the two-vertex
graph contributions (b2) only,

F = −kBT

(
θ0 ln

Q0

θ0
+ θ1 ln

Q1

θ1

)

− 2kBT

 s s+ s��s+ ...

 . (15)

Here values Q0 and Q1 are defined by equation (7). The
explicit form of equation (15) in view of definitions similar
to equation (11) for the mean values of the Mayer-like
functions

F = kBT (θ0 ln θ0 + θ1 ln θ1)

+
kmax∑
k=1

(θ0ϕ
(k)
0 + θ1ϕ

(k)
1 )zk −

kBT

2

kmax∑
k=1

1∑
i,j=0

f
(k)
ij θiθjzk

(16)

contains mean potentials ϕ(k)
0 and ϕ(k)

1 of interaction of a
vacancy or a particle, respectively, with kth order neigh-
bour site. zk denotes the number of such sites. We use
notations

f
(k)
ij =

W
(k)
ij

X
(k)
i X

(k)
j

− 1, (17)

exp(−βΦ(k)
ij ) = W

(k)
ij , (18)

exp(−βϕ(k)(i)) = X
(k)
i , (19)

to simplify equation (16) as much as possible. Due to
translational and point group symmetries of the lattice
it is possible to replace the summation over mutual posi-
tions of two particles belonging to the same coordination
sphere by the multiplication with the co-ordination num-
ber zk of this sphere. The subscripts i, j indicate site states
(vacant or occupied), whereas the superscript k designates
the neighbour order of interacting objects. Hence f (k)

ij de-
fines three types (in accordance with the set (0,0), (0,1)
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and (1,1) of values of subscripts i and j) of the Mayer-
like functions for neighbours of different order k = 1, 2,...
The interaction potential Φij = 0 and Wij = 1, if at least
one of their subscripts is zero. However, due to the mean
potentials the Mayer-like functions are not equal to 0 in
these cases.

In accordance with the variational condition formu-
lated in the previous section the variation of equation (16)
with respect to the mean potentials results in a system of
equations

X
(k)
i =

1∑
j=0

W
(k)
ij θj

X
(k)
j

, i = 0, 1; k = 1, 2, ... (20)

These equations show that the mean potentials for dif-
ferent neighbours are independent of each other and the
interaction range of the mean potentials is the same as for
the interaction potential Φ. The solution of equation (20)
can be written in a closed form

X
(k)
0 =

√
θ0 + θ1/ηk, X

(k)
1 = X

(k)
0 ηk, (21)

where

ηk = −θ1 − θ0

2θ0
+

√(
θ1 − θ0

2θ0

)2

+
θ1

θ0
Wk (22)

is the positive root of a quadratic equation

η2
k +

θ1 − θ0

2θ0
ηk −Wk

θ1

θ0
= 0, (23)

Wk = W
(k)
11 = exp (−βJk) , Jk = Φ

(k)
11 . (24)

Jk is an interaction parameter between neighbours of kth
order. For a system with nearest neighbour interactions
only, equations (21–24) at k = 1 represent ordinary QChA.
For the case of more distant interactions, Jk 6= 0 at k ≥
2, these equations can be considered as a generalization
of QChA.

Due to the normalization condition for lattice concen-
trations, equation (20) can be rewritten in terms of the
Mayer-like functions

1∑
j=0

(
W

(k)
ij

X
(k)
j X

(k)
i

− 1

)
θj =

1∑
j=0

f
(k)
ij θj = 0, (25)

which shows that a two-vertex graph is equal to zero if
the Mayer-like function is averaged over states of one of
its vertices, i.e. the two-vertex graphs with one free vertex
are zero graphs. Hence in QChA all graphs which contain a
vertex linked to others by only one edge do not contribute
to the free energy. This circumstance tremendously re-
duces the number of graphs which have to be considered
in the free energy expansion in the Mayer-like functions.
QChA accounts for contributions of such graphs via mean
potentials.

As a consequence of equation (25) the two-vertex
graphs are given zero values by the mean potentials of

the quasi-chemical approximation

1∑
i=0

1∑
j=0

(
W

(k)
ij

X
(k)
j X

(k)
i

− 1

)
θjθi =

1∑
i=0

1∑
j=0

f
(k)
ij θjθi = 0,

⇒ s s= 0, s��s= 0, ... (26)

Hence the graph contribution to equation (16) is equal to
zero and the free energy in QChA is entirely defined by
the reference system contribution

F ∼= F0 = kBT (θ0 ln θ0 + θ1 ln θ1)

+
kmax∑
k=1

(θ0ϕ
(k)
0 + θ1ϕ

(k)
1 )zk.

(27)

Nevertheless, through the mean potentials this expression
indirectly accounts for contributions of a large number of
zero graphs. This may explain why QChA already yields
semi-quantitative results for the free energy or the chemi-
cal potential of lattice systems (see Sect. 5). However, this
approximation fails in the description of phase transitions
which are very sensitive to small variations of these ther-
modynamic quantities.

4 Beyond QChA - the SCDA

Although more distant neighbours can be handled in a
straightforward way, we consider here a system of particles
with nearest neighbour attractive interactions on a square
lattice since up to now there is no method giving a simple
and at the same time accurate description of this system.

As it was discussed in the previous section the mean
potentials of QChA have the same range as the interac-
tion potential. Hence only nearest neighbour mean poten-
tials have non-zero values and it is convenient to use their
quasi-chemical values defined by equations (21–24) in the
approximation under consideration too. Second neighbour
mean potentials may be treated as corrections and thus in
the free energy diagram expansion we retain only terms
linear in f (2). Bearing in mind that all graphs containing
first neighbour edges with a free vertex give zero contribu-
tions, we can write an approximate equation that contains
only irreducible two-, three- and four-vertex graphs

F

kBT
=

F0

kBT
− 2 s��s− 4 s ss�� − s sss − 2 s sss�� − ...

(28)

In the Appendix the diagrams entering equation (28)
are represented via the mean potentials. It allows
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the summation of them, and to write for the free energy

F

kBT
=

1∑
i=0

θi ln θi +
1∑
i=0

θi

2∑
k=1

zkϕ
(k)
i

kBT

− 2
1∑
i=0

1∑
j=0

(
W

(2)
ij

X
(2)
j X

(2)
j

− 1

)
(Bij + 1)2

θiθj

−
1∑
i=0

1∑
j=0

B2
ijθiθj (29)

where

Bij =
1∑
k=0

θkW
(1)
ik W

(1)
jk

X
(1)
i X

(1)
j

(
X

(1)
k

)2 − 1. (30)

The first derivative of equation (29) with respect to the
next nearest neighbour mean potentials

∂F

∂ϕ
(2)
i

= z2θi

1− 1

X
(2)
i

1∑
j=0

(
W

(2)
ij

X
(2)
j

− 1

)
(Bij + 1)2

θj


(31)

with the variational condition to be taken into account
results in the equation

X
(2)
i =

1∑
j=0

W
(2)
ij

X
(2)
j

(Bij + 1)2
θj , (32)

which defines the second neighbour mean potentials. With
this equation rewritten in the form

1∑
i=0

1∑
j=0

W
(2)
ij

X
(2)
j X

(2)
j

(Bij + 1)2
θiθj = 1 (33)

and equation (30) rewritten as
1∑
j=0

Bijθj = 0 (34)

the third term in equation (29) gives the doubled value of
the square graph, and the free energy takes a simple form

F

kBT
=

1∑
i=0

θi ln θi +
1∑
i=0

θi

2∑
k=1

zkϕ
(k)
i

kBT

+
1∑
i=0

1∑
j=0

B2
ijθiθj + ...

=
F0

kBT
+ s sss − ... (35)

Equation (32) has the same structure as equation (20)
with W (2)

ij (Bij + 1)2 instead of W (1)
ij . Thus the solution of

equation (32) can be obtained in a closed form

X
(2)
1 = X

(2)
0 η2, (36)

X
(2)
0 =

√
V00θ0 + (V01θ1/η2), (37)

where

η2 =
−V01(θ1 − θ0) +

√
V 2

01(θ1 − θ0)2 + 4V00V11θ0θ1

2V00θ0
,

(38)

Vij = W
(2)
ij (Bij + 1)2. (39)

In the case of nearest neighbour interactions, W (2)
ij = 1 for

all combinations of subscripts. However, the quantities Bij
are different from zero, and the second neighbour mean
potentials acquire non-zero values due to statistical effects.

On the basis of the mean potentials additional dia-
grams entering the free energy expansion equation (14)
can be taken into account. The main contribution occurs
from the 6-vertex graph containing first neighbour links
only. A detailed analysis has shown that its values amount
to about 70% of the square graph entering equation (35),
in a wide range of temperatures and concentrations be-
tween 0.2 and 0.8 where mean potentials are important.
Hence, having in mind contributions from other graphs
the expression

F

kBT
=

F0

kBT
+ b s sss =

1∑
i=0

θi ln θi

+
1∑
i=0

θi

2∑
k=1

zkϕ
(k)
i

kBT
+ b

1∑
i=0

1∑
j=0

B2
ijθiθj (40)

for the free energy can be used with b ∼= 0.25.
Equation (40) with equations (21–24) for k = 1 and

equations (36–39) for k = 2 with definitions (18, 19, 30)
represent a simple approximate description – the SCDA –
of the lattice system with attractive nearest neighbour in-
teractions. These expressions are valid for repulsive inter-
actions outside the ordered region of the phase diagram
too. The transcription from the lattice gas to magnetic
systems or binary alloys can be easily done with the help
of respective analogies [1,18]. The SCDA despite its sim-
plicity yields a surprisingly accurate description (see the
next section) of the lattice gas except in the nearest vicin-
ity of critical points.

5 Results and discussion

All thermodynamic characteristics of the system can be
investigated using equation (40) for the free energy. For
example, the chemical potential µ is defined by the
derivative

µ =
(
∂F

∂θ1

)
T

. (41)

This derivative is calculated analytically. However, the
resulting complicated expression can hardly be analyzed
without numerical computations. In Figure 1 calculated
chemical potential isotherms are compared with corre-
sponding MC simulation results [26]. SCDA and MC data
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Fig. 1. Chemical potential (in units of the twice nearest neigh-
bour interaction energy) versus concentration. (a) T/Tc = 0.95
(i), 1.05 (ii), 2.00 (iii). (1) Monte Carlo (MC) simulation (solid
circles), (2) self-consistent diagram approximation (SCDA,
solid line), (3) quasi-chemical approximation (QChA, dashed
line) results. Each group of curves is shifted up by 5 units along
the µ axis with respect to the previous one. (b) T/Tc = 0.95.
(1) MC, (2) SCDA, (3) QChA, (4) µ = 2J . The intersections
of line (4) with the left and right branches of the chemical po-
tential curves define the phase transition points in QChA and
SCDA.

agree in the limits of accuracy of the latter for all values of
the thermodynamical parameters. At slightly supercritical
temperatures the SCDA and MC isotherms display a very
wide plateau in contrast to the quasi-chemical approxima-
tion.

Even in the two-phase region (curves (i) in Figs. 1a
and 1b) the difference between MC and SCDA results
is very small. MC simulations show an almost constant
value of the chemical potential, whereas theoretical results
obtained from equation (41) demonstrate the well-known
Van der Waals kink. It should be noted that this kink
is weakly manifested. The theoretical curve deviates only
slightly from a horizontal straight line and the positions
of its points satisfying the Maxwell construction are very
sensitive to the accuracy of approximations. This is the
reason why the phase transition curve is reproduced with
difficulty by many approximate approaches.
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Fig. 2. The phase diagram of the lattice gas with an attrac-
tive nearest neighbour interaction. (1) Yang expression [18,27],
(2) SCDA, (3) Kikuchi approximation, (4) consolidation site
4×4 approximation [28] and (5) QChA.
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Fig. 3. Heat capacity versus temperature at θ = 0.5. (1) On-
sager solution, (2) SCDA and (3) QChA.

The lattice gas – Ising magnet analogy [18]

m = 1− 2θ (42)

allows comparison of the SCDA phase transition curve
with corresponding values for the magnetization m in
zero magnetic field given by Yang [18,27] on the basis
of the exact Onsager solution. In Figure 2 the lattice gas
phase diagrams in quasi-chemical, Kikuchi, consolidation
site [28], and self-consistent diagram approximations are
compared with the data obtained from Yang’s exact ex-
pression. Again, a high accuracy of the SCDA is notice-
able. Moreover, the critical temperature kBTc/J = 0.565
of SCDA coincides within several tenths of a per cent with
the exact (0.567) value, and can be compared with the
corresponding values of QChA (0.721) and Kikuchi ap-
proximations (0.606).

The heat capacity below (along the coexistence curve)
and above (at constant concentration θ = 0.5) the criti-
cal temperature is shown in Figure 3. The sharp increase
of the SCDA heat capacity values in the vicinity of the
critical point, especially below the critical temperatures,
indicates that the higher order SCDA may be used for an
adequate description of critical phenomena.

It is worthwhile to note that Figures 1–3 are given
in reduced temperature units T/Tc with absolute val-
ues of Tc specified for each approach. All critical tem-
peratures in reduced units are equal to 1. However,
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Fig. 4. Mean potential exponents exp(−βϕ(k)) versus concen-
tration. (a) For the interaction of a particle (solid lines, odd
indices) or a vacancy (dashed lines, even indices) with a near-
est neighbour site; T/Tc = 0.95 (1, 2), T/Tc = 1.20 (3, 4),
T/Tc = 2.00 (5, 6). (b) The same as (a) for the interaction of
a particle or a vacancy with a next nearest neighbour site.

the absolute critical temperature of QChA, for exam-
ple, is 0.721/0.567 = 1.27 times higher than the exact
value. Thus in the temperature region T ∼= Tc different
approximations represent the coexistence curves, chemi-
cal potentials and other thermodynamic and structural
quantities much better in reduced units than in the ab-
solute temperature ones. At the same time, many ap-
proximations (e.g., QChA, Kikuchi, SCDA) in the high
temperature or low concentration limit become exact, re-
quiring the usage of the absolute temperature units at
these conditions. Therefore it is very important for any
approximation to get as best an estimation of the critical
temperature as possible, to satisfactorily represent equi-
librium characteristics at different thermodynamic condi-
tions. SCDA values of lattice gas critical temperatures for
the two-dimensional system considered, as well as for all
cubic three-dimensional lattices (simple, body and face
centered), [29] coincide with their best estimations within
a per cent ensuring practical needs for most applications.

Figure 4 proves that the next nearest neighbour mean
potentials can be considered as small corrections to the
nearest neighbour ones. Nevertheless, their contributions
to the free energy are very important and considerably
improve the concentration and temperature dependences
of the free energy and the chemical potential.
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Fig. 5. MC and SCDA results for the concentration depen-
dence of the distribution functions for two nearest neighbour
vacancies (F (0, 0)/(1− θ)2, odd indices) or for a particle and a
vacancy (F (0, 1)/θ(1− θ), even indices) at T/Tc = 0.95 (1, 2),
T/Tc = 1.20 (3, 4) and T/Tc = 2.00 (5, 6). These quanti-
ties define the ratios of the probabilities for interacting and
noninteracting lattice gases. The solid curves represent SCDA
results. MC results are shown by solid circles.

It follows from the definitions of the interaction energy
(Eq. (1)), the partition function (Eq. (4)), and the free en-
ergy (Eq. (5)) that the probability Fk(1, 1) for two lattice
sites to be occupied is defined by the derivative

Fk(1, 1) =
2
zk

(
∂F

∂Jk

)
θ,T

. (43)

Here the subscripts k = 1, 2, . . . are used to indicate near-
est, next nearest and more distant neighbours. The other
two-site distribution functions can be calculated from the
normalization conditions

Fk(0, 1) = θ − Fk(1, 1), (44)
Fk(0, 0) = 1− θ − Fk(0, 1). (45)

The probabilities for two nearest sites to be vacant F1(0, 0)
or for a vacancy and a particle to be nearest neigh-
bours F1(0, 1) divided by their values for a non-interacting
(Langmuir) gas are represented in Figure 5. These values
show the deviation of the system from the ideal Lang-
muir gas behavior. At all values of thermodynamic pa-
rameters the SCDA values coincide with the MC results
within the precession of the latter. Strong deviations of
these functions from their Langmuir values are observed
at middle and high concentrations and at low tempera-
ture. Although at T = 0.95Tc the SCDA data mostly cor-
respond to thermodynamically unstable states their coin-
cidence with MC results is as good as in stable states. It
can be explained by very small deviations of the chemi-
cal potential from its actual constant value µ = 2J in the
two-phase region at this temperature.

6 Conclusions

The SCDA of the first order represented by equation (40),
with equations (21–24) at k = 1 and equations (30, 36–39)
at k = 2, provides a simple and accurate description of
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the lattice gas system with nearest neighbour attractive
interactions in most areas of the thermodynamical param-
eters. It takes several tenths of a second to calculate on a
personal computer thermodynamic characteristics of the
system in a hundred points along an isotherm.

The quasi-chemical approximation can be considered
as a zero order SCDA. The nearest neighbour mean po-
tentials are found in such a way that the two-vertex graph
with the Mayer-like functions becomes zero valued after
averaging over states of only one of its vertices. It means
that all graphs, which contain a nearest neighbour edge
with a free vertex at its end, do not directly contribute to
the free energy expansion. Their contributions are taken
into account through the mean potentials.

It is convenient to keep the quasi-chemical definition of
the nearest neighbour mean potentials for the first order
SCDA. The considerable improvement of the results for
the thermodynamic characteristics is attained by intro-
ducing the next nearest neighbour mean potentials. The
SCDA can easily be generalized for more distant interac-
tions introducing more distant mean potentials and cal-
culating additional diagrams.

The advantage of the SCDA is connected with the
renormalization of the interaction potential by the mean
potentials, which substantially reduces values of the
Mayer-like functions as compared to the Mayer functions.
Thus the convergence of expansions in the Mayer-like
functions seems to be sufficiently rapid in a wide area of
thermodynamic variables. Also, it promises progress in the
investigation of critical phenomena on the basis of higher
order SCDA.

Support from INTAS through grant 96-0533 is gratefully ac-
knowledged.

Appendix: Summation of particular diagrams

In accordance with the definitions of the Mayer-like func-
tions (Eqs. (12, 17)), the diagrams in equation (28) can
be represented in terms of the mean potentials

s��s= 1∑
i=0

1∑
j=0

f
(2)
ij θiθj , (A.1)

s ss�� =
1∑
i=0

1∑
j=0

f
(2)
ij Bijθiθj , (A.2)

s sss =
1∑
i=0

1∑
j=0

B2
ijθiθj , (A.3)

s sss�� =
1∑
i=0

1∑
j=0

f
(2)
ij B

2
ijθiθj , (A.4)

where

Bij =
1∑
k=0

θkf
(1)
ik f

(1)
jk . (A.5)

To explain the derivation of these expressions it is suffi-
cient to note that equation (A.5) defines the average value
of the product of Mayer-like functions given for two pairs
of nearest neighbours (ki) and (kj) over the states of site
k. Then, in order to derive, for example, equation (A.2),
it is necessary to multiply equation (A.5) by the Mayer-
like function for a pair of second neighbour sites (ij) and
average this product over the states of sites i and j.
Equation (30) follows after using the definition (17),
equation (25) and the normalization condition equa-
tion (6) in equation (A.5). The sum of diagrams (A.1, A.4)
with doubled diagram (A.2) yields the third term in equa-
tion (29).
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